3.398 \(\int \frac{\sqrt{a+b \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac{3}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=351 \[ \frac{2 \sqrt{a+b} (A b-a (A-B)) \cot (c+d x) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right )}{a d}+\frac{2 A (a-b) \sqrt{a+b} \cot (c+d x) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right )}{a d}-\frac{2 B \sqrt{a+b} \cot (c+d x) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac{a+b}{b};\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right )}{d} \]

[Out]

(2*A*(a - b)*Sqrt[a + b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]
])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a*d) + (2
*Sqrt[a + b]*(A*b - a*(A - B))*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c
+ d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a*d
) - (2*Sqrt[a + b]*B*Cot[c + d*x]*EllipticPi[(a + b)/b, ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[
c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/d

________________________________________________________________________________________

Rubi [A]  time = 0.504136, antiderivative size = 351, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {2991, 2809, 2998, 2816, 2994} \[ \frac{2 \sqrt{a+b} (A b-a (A-B)) \cot (c+d x) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right )}{a d}+\frac{2 A (a-b) \sqrt{a+b} \cot (c+d x) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right )}{a d}-\frac{2 B \sqrt{a+b} \cot (c+d x) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac{a+b}{b};\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[a + b*Cos[c + d*x]]*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(3/2),x]

[Out]

(2*A*(a - b)*Sqrt[a + b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]
])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a*d) + (2
*Sqrt[a + b]*(A*b - a*(A - B))*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c
+ d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a*d
) - (2*Sqrt[a + b]*B*Cot[c + d*x]*EllipticPi[(a + b)/b, ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[
c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/d

Rule 2991

Int[(((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]])/((b_.)*sin[(e_.) + (f
_.)*(x_)])^(3/2), x_Symbol] :> Dist[(B*d)/b^2, Int[Sqrt[b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]], x], x] + Int
[(A*c + (B*c + A*d)*Sin[e + f*x])/((b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x] /; FreeQ[{b, c, d, e,
f, A, B}, x] && NeQ[c^2 - d^2, 0]

Rule 2809

Int[Sqrt[(b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[(2*b*Tan
[e + f*x]*Rt[(c + d)/b, 2]*Sqrt[(c*(1 + Csc[e + f*x]))/(c - d)]*Sqrt[(c*(1 - Csc[e + f*x]))/(c + d)]*EllipticP
i[(c + d)/d, ArcSin[Sqrt[c + d*Sin[e + f*x]]/(Sqrt[b*Sin[e + f*x]]*Rt[(c + d)/b, 2])], -((c + d)/(c - d))])/(d
*f), x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] && PosQ[(c + d)/b]

Rule 2998

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*s
in[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A - B)/(a - b), Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e
+ f*x]]), x], x] - Dist[(A*b - a*B)/(a - b), Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin
[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && NeQ[A, B]

Rule 2816

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[(-2*
Tan[e + f*x]*Rt[(a + b)/d, 2]*Sqrt[(a*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(a*(1 + Csc[e + f*x]))/(a - b)]*Ellipt
icF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/(Sqrt[d*Sin[e + f*x]]*Rt[(a + b)/d, 2])], -((a + b)/(a - b))])/(a*f), x] /
; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]

Rule 2994

Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[(-2*A*(c - d)*Tan[e + f*x]*Rt[(c + d)/b, 2]*Sqrt[(c*(1 + Csc[e + f*x]))/(c
- d)]*Sqrt[(c*(1 - Csc[e + f*x]))/(c + d)]*EllipticE[ArcSin[Sqrt[c + d*Sin[e + f*x]]/(Sqrt[b*Sin[e + f*x]]*Rt[
(c + d)/b, 2])], -((c + d)/(c - d))])/(f*b*c^2), x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] &&
 EqQ[A, B] && PosQ[(c + d)/b]

Rubi steps

\begin{align*} \int \frac{\sqrt{a+b \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac{3}{2}}(c+d x)} \, dx &=(b B) \int \frac{\sqrt{\cos (c+d x)}}{\sqrt{a+b \cos (c+d x)}} \, dx+\int \frac{a A+(A b+a B) \cos (c+d x)}{\cos ^{\frac{3}{2}}(c+d x) \sqrt{a+b \cos (c+d x)}} \, dx\\ &=-\frac{2 \sqrt{a+b} B \cot (c+d x) \Pi \left (\frac{a+b}{b};\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right ) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (1+\sec (c+d x))}{a-b}}}{d}+(a A) \int \frac{1+\cos (c+d x)}{\cos ^{\frac{3}{2}}(c+d x) \sqrt{a+b \cos (c+d x)}} \, dx+(A b-a (A-B)) \int \frac{1}{\sqrt{\cos (c+d x)} \sqrt{a+b \cos (c+d x)}} \, dx\\ &=\frac{2 A (a-b) \sqrt{a+b} \cot (c+d x) E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right ) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (1+\sec (c+d x))}{a-b}}}{a d}+\frac{2 \sqrt{a+b} (A b-a (A-B)) \cot (c+d x) F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right ) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (1+\sec (c+d x))}{a-b}}}{a d}-\frac{2 \sqrt{a+b} B \cot (c+d x) \Pi \left (\frac{a+b}{b};\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right ) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (1+\sec (c+d x))}{a-b}}}{d}\\ \end{align*}

Mathematica [A]  time = 12.9246, size = 275, normalized size = 0.78 \[ \frac{2 (a (A+B)+b (A-B)) \sqrt{\cos (c+d x)+1} \sqrt{\frac{a+b \cos (c+d x)}{(a+b) (\cos (c+d x)+1)}} F\left (\sin ^{-1}\left (\tan \left (\frac{1}{2} (c+d x)\right )\right )|\frac{b-a}{a+b}\right )+\frac{2 A \tan \left (\frac{1}{2} (c+d x)\right ) (a+b \cos (c+d x))}{\sqrt{\cos (c+d x)}}-2 A (a+b) \sqrt{\cos (c+d x)+1} \sqrt{\frac{a+b \cos (c+d x)}{(a+b) (\cos (c+d x)+1)}} E\left (\sin ^{-1}\left (\tan \left (\frac{1}{2} (c+d x)\right )\right )|\frac{b-a}{a+b}\right )-4 b B \sqrt{\cos (c+d x)+1} \sqrt{\frac{a+b \cos (c+d x)}{(a+b) (\cos (c+d x)+1)}} \Pi \left (-1;-\sin ^{-1}\left (\tan \left (\frac{1}{2} (c+d x)\right )\right )|\frac{b-a}{a+b}\right )}{d \sqrt{a+b \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[a + b*Cos[c + d*x]]*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(3/2),x]

[Out]

(-2*A*(a + b)*Sqrt[1 + Cos[c + d*x]]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[
Tan[(c + d*x)/2]], (-a + b)/(a + b)] + 2*(b*(A - B) + a*(A + B))*Sqrt[1 + Cos[c + d*x]]*Sqrt[(a + b*Cos[c + d*
x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] - 4*b*B*Sqrt[1 + Cos[c
 + d*x]]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticPi[-1, -ArcSin[Tan[(c + d*x)/2]], (-a
 + b)/(a + b)] + (2*A*(a + b*Cos[c + d*x])*Tan[(c + d*x)/2])/Sqrt[Cos[c + d*x]])/(d*Sqrt[a + b*Cos[c + d*x]])

________________________________________________________________________________________

Maple [B]  time = 0.446, size = 1687, normalized size = 4.8 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(3/2),x)

[Out]

-2/d/(a+b*cos(d*x+c))^(1/2)*(B*(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/
2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*sin(d*x+c)*cos(d*x+c)^2*a-B*(cos(d*x+c)/(1+cos(d
*x+c)))^(3/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+
b))^(1/2))*sin(d*x+c)*cos(d*x+c)^2*b+2*B*(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*
x+c)))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,(-(a-b)/(a+b))^(1/2))*sin(d*x+c)*cos(d*x+c)^2*b+2*B*(cos
(d*x+c)/(1+cos(d*x+c)))^(3/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*
x+c),(-(a-b)/(a+b))^(1/2))*sin(d*x+c)*cos(d*x+c)*a-2*B*(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*(1/(a+b)*(a+b*cos(d*x
+c))/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*sin(d*x+c)*cos(d*x+c)*b+
4*B*(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticPi((-1+cos(d*x+c
))/sin(d*x+c),-1,(-(a-b)/(a+b))^(1/2))*sin(d*x+c)*cos(d*x+c)*b+A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a
+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*sin(d*x+c)*cos
(d*x+c)^2*a+A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+
cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*sin(d*x+c)*cos(d*x+c)^2*b-A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/
(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*sin(d*
x+c)*cos(d*x+c)^2*a-A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*Ellipt
icE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*sin(d*x+c)*cos(d*x+c)^2*b+B*(cos(d*x+c)/(1+cos(d*x+c)))^(
3/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2)
)*sin(d*x+c)*a-B*(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF((
-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*sin(d*x+c)*b+2*B*(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*(1/(a+b)*(a
+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,(-(a-b)/(a+b))^(1/2))*sin(d*x+c)
*b+A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c
))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*sin(d*x+c)*cos(d*x+c)*a+A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*
cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*sin(d*x+c)*cos(d*
x+c)*b-A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d
*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*sin(d*x+c)*cos(d*x+c)*a-A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(
a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*sin(d*x+c)*co
s(d*x+c)*b+A*cos(d*x+c)^3*b+A*cos(d*x+c)^2*a-A*cos(d*x+c)^2*b-A*cos(d*x+c)*a)/cos(d*x+c)^(3/2)/sin(d*x+c)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \cos \left (d x + c\right ) + A\right )} \sqrt{b \cos \left (d x + c\right ) + a}}{\cos \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c) + a)/cos(d*x + c)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (B \cos \left (d x + c\right ) + A\right )} \sqrt{b \cos \left (d x + c\right ) + a}}{\cos \left (d x + c\right )^{\frac{3}{2}}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

integral((B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c) + a)/cos(d*x + c)^(3/2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (A + B \cos{\left (c + d x \right )}\right ) \sqrt{a + b \cos{\left (c + d x \right )}}}{\cos ^{\frac{3}{2}}{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))**(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)**(3/2),x)

[Out]

Integral((A + B*cos(c + d*x))*sqrt(a + b*cos(c + d*x))/cos(c + d*x)**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \cos \left (d x + c\right ) + A\right )} \sqrt{b \cos \left (d x + c\right ) + a}}{\cos \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c) + a)/cos(d*x + c)^(3/2), x)